EXPERIENCING MUSIC TECHNOLOGY
UPDATED THIRD EDITION

David Brian Williams
Illinois State University

Peter Richard Webster
Northwestern University
To Kay and Connie
Brief Contents

Preface xxi

VIEWPORT I Musicians and Their Use of Technology 1
 Module 1 People Making Technology 3
 Module 2 People Using Technology 12
 Module 3 People Questioning Technology 17
 Module 4 People Helping with Technology 21

VIEWPORT II Computer and Internet Concepts for Musicians 25
 Module 5 Computer Operating Systems and Internet Software 27
 Module 6 Computer and Networking Concepts 46
 Module 7 The Mechanics of Computers and Networking 57

VIEWPORT III Digital Audio Basics 75
 Module 8 Acoustics, Digital Audio, and Music Synthesis 81
 Module 9 Software for Capturing, Editing, and Storing Digital Audio 103
 Module 10 Building a No-Frills Digital Audio Workstation 127

VIEWPORT IV Doing More with Digital Audio 143
 Module 11 Sonic Realism: MPEG, Surround Sound, and Discs 147
 Module 12 Software for Multiple Tracks and Channels 167
 Module 13 Hardware for Multichannel Digital Audio 197

VIEWPORT V Music Sequencing and MIDI Basics 213
 Module 14 How MIDI Works 216
 Module 15 Software Techniques for MIDI Sequencing 229
 Module 16 MIDI Hardware: Interfaces, Keyboards, and Sound Modules 250

VIEWPORT VI Doing More with MIDI and Beyond 269
 Module 17 Adventures in Sound Shaping and Synthesis 272
 Module 18 Extending MIDI: Controllers, SoundFonts, and Timing 311

VIEWPORT VII Music Notation 331
 Module 19 Coding Systems for Music Notation and Performance 335
 Module 20 Software for Music Notation 357
 Module 21 Notation Hardware: Input Devices, Scanners, and OMR 397

VIEWPORT VIII Computer-Aided Instruction in Music 403
 Module 22 Music Software for Knowledge and Skill Development 406
 Module 23 New Directions in Music-Instruction Software 426
VIEWPORT IX
Putting It All Together 445
Appendix A:
 Selected Readings by Viewport 449
Appendix B:
 EMT Workstation Equipment Codes 453
Index 455
Contents

Preface xx
So, What’s New With the Update? xxii
Book Content and Goals xxiii
Experiencing Music Technology Online Projects and Support Website xxiv
Icons in the Margin of the Book xxiv
Definitions xxv
Acknowledgments xxvi
About the Authors xxvii

VIEWPORT 1 Musicians and Their Use of Technology 1

Overview 1
Objectives 1
Online Software Projects 2

Module 1 People Making Technology 3
Ballet of Technology and Music 3
Five Periods of Technology History 4
Period I (1600s–mid-1800s) 4
Period II (mid-1800s–early 1900s) 4
Period III (early 1900s–mid-1900s) 5
Period IV (mid-1900s–1970s) 7
Period V (1970s–present) 8

Module 2 People Using Technology 12
The Unexpected Turn 12
Innovation and Creativity 13
Pacing 15
Music Technology in Practice 15
Module 3 People Questioning Technology 17

Ten Misconceptions 17
No. 1. Does technology refer only to hardware? 17
No. 2. Is there intimidating hidden “knowledge” inside the hardware? 17
No. 3. Will the hardware break if something is done incorrectly? 18
No. 4. Isn’t computer technology really reserved for the technical elite? 18
No. 5. Doesn’t computer technology take too long to learn? 18
No. 6. Isn’t computer technology only for the young? 18
No. 7. Doesn’t technology remove the creative spirit, producing music that is antiseptic or sterile? 19
No. 8. Aren’t computers, digital audio, MIDI, and DVDs, when used for teaching about music, just another expensive set of technological gimmicks that take time and money away from the real business of music education? 19
No. 9. Doesn’t technology, not music, become the focus? 19
No. 10. Isn’t it true that technology replaces musicians’ jobs? 19

Resulting Attitudes 20

Module 4 People Helping with Technology 21

People with Technical Skills 22
Computer Facilities 22
Print and Nonprint Materials 22
Professional Associations 22

VIEWPORT II Computer and Internet Concepts for Musicians 25

Overview 25
Objectives 25
Online Software Projects 26
Music Technology in Practice 26
Chi Fan 26

Module 5 Computer Operating Systems and Internet Software 27

The Desktop: Your Computer and Its Operating System 27
The Function of an Operating System 27
Streams of Information 27
MIDI 28
Printer/Mouse/Keyboard 28
Look and Feel: Graphic User Interface (GUI) 29
Staying Organized with Hierarchical File Structure 29
Volumes, Folders, and Files 29
Naming Files 30
Important Work Habits 31
Saving Files 31
Importance of Copyright 32
Viruses Defined 33
VIEWPORT III Digital Audio Basics 75

 The Big Picture 75
 Viewport III Overview 77
 Music Technology in Practice 78
 Nate DeYoung 78
 Objectives 78
 Kevin Robbins 79
 Online Software Projects 80

Module 8 Acoustics, Digital Audio, and Music Synthesis 81

Acoustical and Perceptual Dimensions of Sound 81
 Vibrations, Frequency, and Amplitude 84
 Envelopes 86
 Harmonic Spectrum 87
 Overtones 88
 Harmonic Spectrum and Fourier's Theorem 88
 Summary of the Acoustic Properties of Sound 90

Concepts of Digital Audio and Sampling: Analog to Digital and Back 90
 Sampling Rates and Quantizing 92
 Optimizing the Quality of Digital Audio 92

Formats and Compression for Storing Digital Audio Files 95
 Sound Compression 96
 Increasing Compression While Fooling the Ear 97
 Streaming Audio Files for the Internet 98

Varieties of Music Synthesis Techniques 99
 Analog Synthesis: Additive, Subtractive, and Distortive 99
 Physical Modeling 100
 Digital Wave Synthesis 101
 Granular Synthesis 102

Module 9 Software for Capturing, Editing, and Storing Digital Audio 103

Working with Audio on the Web 103
 Obtaining Web Music Files 104
 Organizing and Playing Web Music Files 105
 Creating and Storing Your Own Web Music Audio 106

Working with Streamed Media 108
 Streaming Audio in Action 108

Preparing Your Computer for Digital Audio Recording 109
 PC Computers 109
 Macintosh Computers 110

Using Digital Audio Editing Software 110
 What Is Digital Audio Editing Software? 110
 Basic Capture and Display of Digital Audio Editing Software 111
Module 10 Building a No-Frills Digital Audio Workstation 127
IPOS Model 127
Basic Digital Audio Hardware: ADCs and DACs 128
Digital Audio Interface 128
Input and Output: Connecting to the Outside World 130
Sound Drivers and Latency: Who’s in Charge Here? 131
Sorting Out Plugs and Jacks 132
Adding a Mixer and Performance Options with EMT-3 134
Mixer Input Controls 136
Mixer Output Controls 137
Microphones 137
Storage Devices for Digital Audio Work 139
CD/DVD-R and -RW Storage 140
Digital Music Players 140
Speakers and Recorders 140

Viewport IV Doing More with Digital Audio 143
Overview 143
Objectives 143
Music Technology in Practice 144
John Shirley 144
Aaron Paolucci 144
Online Software Projects 146

Module 11 Sonic Realism: MPEG, Surround Sound, and Laser Discs 147
Multichannel Digital Audio Formats 147
MPEG 148
Surround-Sound Audio Formats 152
CD and DVD Laser Disc Formats 155
General Characteristics of CD and DVD Laser Discs 155
Compact Laser Disc Playables and Recordables 158
Digital Versatile Discs (DVDs) 161

Module 12 Software for Multiple Tracks and Channels 167
Important Terms 167
Types of Multiple-Track Software 167
Module 14 How MIDI Works 216
- MIDI Sound Structures 217
- MIDI Performance Language 218
 - Channel Messages 219
 - System Messages 220
- General MIDI 221
- Storing and Exchanging MIDI Files 224
- Experiencing MIDI Software and Hardware 225

Module 15 Software Techniques for MIDI Sequencing 229
- Basic Design of Sequencing Software 230
 - What Does Sequencing Software Do? 230
- Basics of Using Sequencers with MIDI Data 233
 - Entering MIDI Data 234
 - Creating the Sequences 237
 - Editing and Saving Sequences 239
- Plug-Ins: Applying MIDI Effects and Software-Based Instruments 243
 - MIDI Effects 243
 - Virtual Instruments 243
- Adding Digital Audio 244
 - Basic Entry and Data Representation 245
 - Effects Processing 245
 - Mixing and Mastering 246
- Saving Sequencing Files 248
 - MIDI Content Only 248
 - Mixed Data (MIDI/Digital Audio) 249

Module 16 MIDI Hardware: Interfaces, Keyboards, and Sound Modules 250
- MIDI Hardware Basics 251
 - MIDI Interfaces 251
 - MIDI Networks: Physical and Virtual 252
 - MIDI THRUs, Mergers, and Patchbays 254
 - Beyond 32 Channels 254
- Basic MIDI Keyboard Controllers and Sound Modules 255
 - MIDI Sound Modules 255
 - Keyboard Controllers 258
- MIDI Workstations 259
 - Keyboard 260
 - Alternative Controllers 261
 - MIDI Capabilities 262
Sound Generation and Drum Kits, Sample Playing, and
Real-Time Sampling 263
Drum Kits and Sounds 264
Synthesis and Digital Effects 264
Sequencers 266
Digital Expansion and Connections 267
Workstations—In Conclusion 268

VIEWPORT VI Doing More with MIDI and Beyond 269

Overview 269
Objectives 269
Music Technology in Practice 270
Henry Panion III 270
Software Projects 271

Module 17 Adventures in Sound Shaping and Synthesis 272
Digital Audio Workstation (DAW) Software 272
Interface Features 273
Editing and Input/Output 279
Plug-In Effects 284
Mixing and Mastering with DAW Software 287
Specialized Plug-In Samplers, Synthesizers, and Virtual Instruments 293
How Specialized Plug-Ins Are Used 298
Virtual Instruments 298
Synthesizers 300
Synthesizer/Sampler Combinations 303
“All-in-One” Virtual Studios 304
Reason 304
ReWire Connections 307
The Future of “All-in-One” Virtual Studios 308
Programming Environments 308
Max/MSP 308
Other Programming Approaches 309

Module 18 Extending MIDI: Controllers, SoundFonts, and Timing 311
Controller Cornucopia: Drums, Guitars, Winds, and More 311
Drum Controllers 312
Guitar and String Controllers 314
Voice Controllers 316
Wind Controllers 316
Mind-Expanding MIDI Controllers 317
New Modes of Instrument Expression 318
Integrating MIDI and Digital Audio 320
 MIDI Control Surfaces 321
Subjective Factors for MIDI Controllers 323
Enhancing the MIDI Sound Palette: GS, XG, SoundFonts, and DLS 323
 MIDI SoundFonts 324
 MIDI Down-Loadable Sounds (DLS) 324
MIDI and Audio Timing: SMPTE, Word Clock, mLAN, and More 325
 Who’s Conducting This Group? 325
 Keeping the Tape Time 326
 Keeping the MIDI Time: MIDI Time Codes 328
 ADAT, Word Clock, and Digidesign Sync 328
 mLAN Music Network and Word Clock 329

VIEWPORT VII Music Notation 331
Overview 331
 Objectives 331
Music Technology in Practice 332
 Mike Wallace 332
 Jouni Koskimäki 333
 Online Software Projects 334

Module 19 Coding Systems for Music Notation and Performance 335
How Is Notation Represented in a Computer? 335
 Data Structures for Performing and Display 335
 Translating between Performance and Display Data 336
A Simple Music Coding 337
Tour of Computer Music-Coding Systems 339
 Pre-1950s: Mechanical Music Coding 339
 1950s to 1960s: Notation to Feed the First Computer Music Synthesizers 341
 Mid-1960s to Mid-1970s: Friendlier Text-Based Music Coding 341
 1970s to Early 1980s: Experimentation and Graphic Display of Notation 344
 Mid-1980s: The Birth of Desktop Music Publishing 346
 Late 1980s and 1990s: Intelligent Rule-Based Music-Coding Systems 347
 1990s: Seeking Interchangeable Notation-Coding Systems 348
 2000s: Web-Based Notation-Coding Systems 351
Music Fonts for Notation 353
 Bitmapped Versus Outline Fonts 354
 Coding Music-Font Symbols 354
 Lots of Music Fonts 355
Is WYPWYP Music Software Possible? 355
Module 20 Software for Music Notation 357
 Content and Context: What Do You Need? 357
 Basic Operational Features 360
 Help 360
 Interface Design 361
 Getting Started 365
 Score Display 365
 Playback, Printing, and Distribution 366
 Note Entry and Basic Score Design 368
 Methods of Note Entry 368
 Mass Editing 373
 Other Basic Features for Score Design 374
 Advanced Editing 376
 Editing Aids 379
 Transposition and Automatic Arrangements 380
 Enhancing the Score 381
 Text and Lyrics 385
 Play, Print, and Save 388
 Playback Options 388
 Print Controls 391
 Saving and Distribution 393
 Advanced Capabilities 394
 Additional Capabilities 395
 Plug-Ins 395
 Finale 2008 395
 Sibelius 5 396

Module 21 Notation Hardware: Input Devices, Scanners, and OMR 397
 Input Devices for Music Notation 397
 Text and Key Codes from the Computer Keyboard 397
 Graphic Palettes and a Mouse 399
 MIDI Controllers 399
 Singing in the Notes 400
 Scanners and OMR 400
 Optical Music Recognition (OMR) 400
 The Mechanics of a Scanner 401

Viewport VIII Computer-Aided Instruction in Music 403
 Overview 403
 Objectives 403
Module 22
Music Software for Knowledge and Skill Development
406

Importance of CAI
406

Categories of CAI Software: Approach and Content
408
- Drill-and-Practice
 409
- Flexible Practice
 409
- Guided Instruction
 410
- Game-Based
 410
- Exploratory/Creative
 410
- Teacher Resource
 410
- Internet-Based
 411

Examples of Knowledge and Skill-Development Software
411
- Beginning-Skills Software for Knowledge and Skill Development
 411
- Drill-and-Practice Software Examples
 413
- Flexible-Practice Software Examples
 415
- Guided Instruction
 420
- Game-Based
 423

Module 23
New Directions in Music-Instruction Software
426

Examples of New Directions in Music-Instruction Software
426
- Exploratory/Creative-Software Examples
 426
- Teacher-Resource Software Examples
 434
- Internet-Based Software Examples
 437

What to Choose: A Matter of Content and Need
442

Software from Past Viewports and CAI
443

VIEWPORT XI
Putting It All Together
445

Projects and Selected Readings
445

Expanding Your Skills and Creative Urge
445

Closing Note
447

Appendix A:
Selected Readings by Viewport
449

Appendix B:
EMT Workstation Equipment Codes
453

Index
455
Preface

“By looking for the structure in signals, how they were generated, we go beyond the surface appearance of bits and discover the building blocks out of which image, sound, or text came. This is one of the most important facts of digital life.”

—Nicholas Negroponte, Being Digital (1995)

Welcome to the update for the third edition of Experiencing Music Technology! If you are familiar with the earlier versions of this textbook, we hope you will appreciate the changes herein and find this version as useful as the last. If you are a new reader, we hope you will enjoy this introduction to music technology and its role in the contemporary music scene.

Writing about this field is exciting. Many times since the last edition, we have stopped the process of reviewing and testing new software and hardware, remarking to each other how truly amazing the field’s achievements have been since our last edition. In 1993, when we first decided to create this textbook, we were motivated in large part by the power of music technology to enhance the experience of musicians of all ages and experience levels. As researchers, educators, and musicians, we saw the role of music technology as a major force in teaching the technical aspects of music and, perhaps most importantly, encouraging the creative experience of music composition, improvisation, performance, and music listening. More than 14 years later as we conclude this edition, we believe this more than ever before.

Of course, updating such a book presents us with one obvious challenge: the persistence of change. Developments in hardware, software, and even the very culture of music technology itself seem to escalate exponentially. Since 1999, we have seen: (1) major operating-system changes in both PC and Macintosh computers, (2) a tripling of the power of personal computers accompanied by major drops in cost, (3) literally hundreds of new music-software titles in every major category produced by companies in the United States and abroad, (4) new hardware devices for a variety of music needs at all price points, and (5) major shifts in the way music is acquired and enjoyed by us all. Just a few of the new technologies we have seen emerge include mobile computing, wireless, DVD and surround sound, soft synths and effects, and the prevailing dominance of digital audio, with a bias toward software rather than hardware solutions. All of this has an obvious effect on our ability to do a credible job of accounting for the field, for those both inside and outside academe.

The task is made a little easier because of the approach we have taken since the start. In each edition, we concentrate less on the specifics of each software
In the first version of the third edition, we incorporated many changes and these continue in the current updated edition. For example, we continue our emphasis on music and people. We have retained the structure that begins with overall issues of operating systems and Internet use, followed by several sections on digital audio and MIDI. We move to notation and then end with computer-aided instruction. Throughout the book, we try to reflect the most leading-edge topics in music software, hardware, and data structures.

This upgrade includes several new features. The majority of screen shots have been completely redone to reflect the inevitable changes in software and hardware.
development in the last three years. We have included new software titles and deleted others, based on our understanding of the changing scenes in music production and in music instruction software. When appropriate, we have reflected the changes in major operating systems, including the development of Microsoft’s Vista OS for PC computers and the new Leopard version of OS X for Macintosh. All of the hardware and key concepts have been reviewed, updated where needed, and new technologies and products replaced or added to reflect the current computer and computer music scene.

Perhaps the biggest change has been our decision to move the project tutorials for software from a bundled DVD to online sources. After discussions with many users of the book—both instructors and students—and after considering changes in bookstore procedures and the obvious flexibility of online distribution, we are happy to provide a set of the most used tutorials in their current version as an online resource. Throughout the text, we include links to the projects in the same way we have always done. For information on access to these step-by-step project tutorials on important music software, consult our book website at http://www.emtbook.net.

Book Content and Goals

Experiencing Music Technology, 3rd Edition, covers the essential topics a musician should consider when exploring the use of computers and technology in the many aspects of the music experience: listening, performing, composing, teaching, and managing. The book is designed as an introductory resource for a wide audience both inside and outside the academic setting. Although it is introductory in scope, it still provides considerable depth of coverage on critical music-technology topics.

Modular in design, the book’s resources can be used in many ways. Although intended as the text for a complete undergraduate or graduate course of study devoted to music technology, it can also serve as a supplemental resource for other courses in the curriculum: general musicianship, piano pedagogy, theory and aural skills, arranging and orchestration, music composition and improvisation, instructional design, and other contemporary topics.

In addition, the book can be easily read and used for self-study by people who are simply curious about and intrigued by the use of computers for music making. Professional musicians, parents, children, computer aficionados, and lay musicians of all kinds may find the book helpful in increasing their understanding of music technology.

Experiencing Music Technology is designed to meet the following goals:

- Provide a conceptual overview of music and technology with essential study and reference material
- Give a broad perspective of the many ways people can use technology in music applications
- Offer modular organization of the material to provide flexibility for the reader and the instructor
- Note historic milestones in music computing and technology
- Promote a systems approach to computer understanding, planning, and implementation by stressing five components: people, procedures, data, software, and hardware
• Emphasize hardware and software unique to music applications
• Focus on the conceptual and cross-application features that define current commercial hardware and software
• Avoid featuring industry-specific products for their own sake, instead emphasizing features in common or contrast with other products to illustrate their general application to music experiences.

Experiencing Music Technology Online Projects and Support Website

Online Web-based Projects are available to provide supportive tutorials to parallel the book material. While the textbook illustrates concepts of music technology with a broad range of software examples, The Online Projects provide hands-on activities focused on specific commercial software to parallel the major topics in the book. All of the materials can be easily viewed through a web browser.

Each software activity is a tutorial that features step-by-step directions for using a specific software application. A generous number of screen shots are provided to illustrate the steps in the tutorials. Links are included to related materials, including worksheets that students can use to track their progress and teachers can use to evaluate work completed. These worksheets can be viewed and printed right from a web browser. The Online Projects are available as ZIP files for download at www.emtbook.net, on file for each project activity.

Icons in the Margin of the Book

To help you as you progress through each chapter, we have created several icons that will alert you to different levels of help. Watch for these icons:

• LINKS to helpful information related to this topic elsewhere in the book

• TIPS that are especially helpful to those just starting to use computers and music technology

• ASIDES that are interesting notes for reading enjoyment and mind expansion

• Online Project materials: training online at www.emtbook.net that accompanies this textbook and provides hands-on experience with software noted in the textbook
Definitions

In addition to the term viewport, a few other terms are critical in this book. We need to be sure that you understand what terms like musician, music experience, computer, and technology mean for us.

Musician

The term musician refers to anyone, at any level of sophistication, engaged in music experiences. This definition of musician includes the parent, child, student, teacher, administrator, performer, and composer. We realize that the usual use of this term refers to individuals with advanced skills in music, particularly in performance. However, in the interest of promoting a view of music computing accessible to the widest-possible audience, we have chosen this more-relaxed definition.

Music Experience

Music experience refers to the fundamental ways people interact with music cognitively, emotionally, and aesthetically. Included in this are the processes of listening to, performing, and composing music, which are the hallmarks of music as art. Throughout this book, we are interested in ways that technology can enhance these fundamental aspects of experiencing music. In addition, we are concerned with how technology can help with teaching and studying music and managing music activities. Although these activities are not primary music experiences, they are vital to music as practiced in our society.

Computer

The term computer, as used in this book, refers to small computer systems commonly known as personal computers. In creating our illustrations, we have chosen to focus on the two primary icon-based computing environments used today by musicians: (1) IBM PCs and their compatibles, commonly referred to as either “Windows” or “PC” machines, and (2) Macintosh, sometimes called “Mac,” computers. Throughout the book, we refer to these as either “Macintosh” or “PC” machines, or “Macintosh” or “Windows” operating systems, regardless of whether the versions are OS 9, OS X, Windows 2000, Windows NT, Windows XP, Vista or any future versions of these. By icon-based, we mean operating systems that use graphic images or icons for common operations with the computer.

Technology

The term technology refers to computers and all of the music and nonmusic peripherals needed to perform music tasks with computers. These peripheral devices include such hardware as electronic-music keyboards, MIDI controllers, printers, scanners, CD players, and so on.
Acknowledgments

First, we’d like to renew our thanks to everyone recognized in the two previous editions for their generous help, insights, and guidance in bringing this book project to fruition. For this third edition and its update, we extend our sincere thanks to James Frankel (Teachers College, Columbia University), Sara Hagen (Valley City State University), Evelyn K. Orman (Louisiana State University), several anonymous reviewers who offered insightful critiques of the second edition, and a number of colleagues across the country who have read portions of the new edition and offered comment, factual accuracy, and revised wording. These include a select group of people who provided technical reviews of our written materials: Frank Clark (Georgia Institute of Technology), Don Byrd (Indiana University), Chris Douglas (Edirol), Scott Genung (Illinois State University), Ken Johnson (M-Audio), Virgil Moorefield (University of Michigan) Scott Lipscomb (University of Minnesota), and Ken Pohlmann (University of Miami). Then there were those who came through with critical information and support materials at just the right time: James Bohn; John Dunn (Indiana University); Ben Flin, Peter Maund, and Bobbie Thornton (Sibelius); Greg Smith (Hal Leonard); Bill Hanson (Apple Computer); Billee Kraut (AABACA); Tom Lykins (Sound Marketing); Tom Johnson (MakeMusic!); Henry Panson (University of Alabama-Birmingham); Sam Reese (University of Illinois); Perry Roland (University of Virginia); Eleanor Selfridge-Field (Center for Computer Assisted Research in the Humanities), Tom White (MIDI Manufacturers Association); Lee and Laura Whitmore (Sibelius); and Larry Worster (The Metropolitan State College of Denver); and numerous industry contacts who came through with photos and information for us. These professionals have added enormously to the reliability and validity of the material herein. Of course, any errors remain solely our responsibility.

Thanks go to the many students who have taken our courses and to colleagues in our workshops and conference sessions who have offered much help with their thoughtful questions and suggestions over these last three years. A special thanks to Marc Jacoby, Jay Dorfman, and Maria Horvath, who helped with certain tutorial training projects.

To the administrators at our respective universities, Illinois State and Northwestern, we offer our appreciation for the support given over the past 14 years for our book research and those scholarly activities that work in tandem with this activity.

Our final acknowledgments go to Clark Baxter, Erikka Adams, and Georgia Young. Samirendra Ghosh wonderfully navigated the pressures of the final publication process with exceptional finesse. All those at Cengage showed remarkable patience and perseverance with two authors who attempted to interweave writing and research time with many other administrative and teaching responsibilities and they have our thanks!

David Brian Williams, Bloomington, Illinois
Peter Richard Webster, Winnetka, Illinois
About the Authors

David Brian Williams and Peter Richard Webster have partnered for more than 18 years to provide leadership to the music profession in technology applications; workshops on the application of technology to music and music education; and presentations for state, national, and international conferences, including MENC, CMS, ATMI, and NASM.

David Brian Williams is Emeritus Professor of Music and Arts Technology at Illinois State University. Dr. Williams founded one of the first nationally recognized integrated arts technology programs and served a four-year appointment as Associate Vice President for Information Technology on his campus. He is currently a freelance consultant on computers and music technology (www.coach4technology.net). In the late 1970s, he cofounded Micro Music, Inc., and developed numerous music-education titles for the Apple II and the MMI DAC sound card. He has written extensively in the areas of music education, music psychology, music and arts technology, and instructional development. He has served on the boards of MENC, CMS, Illinois Music Educators Association, and ATMI. He chaired the MENC task force for developing Opportunity-to-Learn Standards for Music Technology and, in 2001, received the Illinois Music Educators Association Distinguished Service Award for his work in music technology.

Peter Richard Webster is the John Beattie Professor of Music Education and Technology at Northwestern University’s School of Music, where he also serves as the Associate Dean for Faculty Affairs, directs doctoral research in music education, and serves on the music technology, cognition, and music-education faculties. He is the author of Measures of Creative Thinking in Music, an assessment tool designed for children aged 6–10. He has published in numerous professional publications, such as Music Educators Journal, Journal of Research in Music Education, CRME Bulletin, Contributions to Music Education, Arts Education and Policy Review, Research Studies in Music Education, Music Education Research, and Psychomusicology. He has authored chapters in several books, including chapters on creative thinking in music and music technology research in the first and second editions of the Handbook of Research on Music Teaching and Learning. He has served on the board of CMS and is a past president of ATMI.
EXPERIENCING MUSIC TECHNOLOGY